Hybrid particle swarm algorithm for solving nonlinear constraint optimization problems

نویسندگان

  • BINGQIN QIAO
  • XIAOMING CHANG
  • MINGWEI CUI
  • KUI YAO
چکیده

Based on the combination of the particle swarm algorithm and multiplier penalty function method for the constraint conditions, this paper proposes an improved hybrid particle swarm optimization algorithm which is used to solve nonlinear constraint optimization problems. The algorithm converts nonlinear constraint function into no-constraints nonlinear problems by constructing the multiplier penalty function to use the multiplier penalty function values as the fitness of particles. Under the constraint conditions to make the particle swarm track the best particle and fly to the global best, this paper is to redefine p-best which is the particles position last iteration and g-best which refers to the best position of the group last iteration. And, by redefining p-best and g-best, the particle can avoid tracking the p-best and the g-best whose fitness are excellent but violate constraints to great extent, so that particle swarm would finally converge to the optimum position in the feasible domain. Numerical experiments show that the new algorithm is correct and effective. Key–Words: Particle swarm optimization; Multiplier method; Multiplier penalty function; Nonlinear constraint optimization; Nonlinear constraint; Global optimization.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Particle Swarm Optimization Algorithm for Mixed-Variable Nonlinear Problems

Many engineering design problems involve a combination of both continuous anddiscrete variables. However, the number of studies scarcely exceeds a few on mixed-variableproblems. In this research Particle Swarm Optimization (PSO) algorithm is employed to solve mixedvariablenonlinear problems. PSO is an efficient method of dealing with nonlinear and non-convexoptimization problems. In this paper,...

متن کامل

Solving Fractional Programming Problems based on Swarm Intelligence

This paper presents a new approach to solve Fractional Programming Problems (FPPs) based on two different Swarm Intelligence (SI) algorithms. The two algorithms are: Particle Swarm Optimization, and Firefly Algorithm. The two algorithms are tested using several FPP benchmark examples and two selected industrial applications. The test aims to prove the capability of the SI algorithms to s...

متن کامل

Hub Covering Location Problem Considering Queuing and Capacity Constraints

In this paper, a hub covering location problem is considered. Hubs, which are the most congested part of a network, are modeled as M/M/C queuing system and located in placeswhere the entrance flows are more than a predetermined value.A fuzzy constraint is considered in order to limit the transportation time between all origin-destination pairs in the network.On modeling, a nonlinear mathematica...

متن کامل

Three Hybrid Metaheuristic Algorithms for Stochastic Flexible Flow Shop Scheduling Problem with Preventive Maintenance and Budget Constraint

Stochastic flexible flow shop scheduling problem (SFFSSP) is one the main focus of researchers due to the complexity arises from inherent uncertainties and also the difficulty of solving such NP-hard problems. Conventionally, in such problems each machine’s job process time may encounter uncertainty due to their relevant random behaviour. In order to examine such problems more realistically, fi...

متن کامل

Constrained Nonlinear Optimal Control via a Hybrid BA-SD

The non-convex behavior presented by nonlinear systems limits the application of classical optimization techniques to solve optimal control problems for these kinds of systems. This paper proposes a hybrid algorithm, namely BA-SD, by combining Bee algorithm (BA) with steepest descent (SD) method for numerically solving nonlinear optimal control (NOC) problems. The proposed algorithm includes th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012